a2 United States Patent

Fukuzaki et al.

US009170841B2

(10) Patent No.: US 9,170,841 B2
(45) Date of Patent: Oct. 27,2015

(54) MULTIPROCESSOR SYSTEM FOR
COMPARING EXECUTION ORDER OF
TASKS TO A FAILURE PATTERN

(71) Applicant: Panasonic Corporation, Osaka (JP)

(72) Inventors: Kiyokazu Fukuzaki, Osaka (JP);
Masanori Henmi, Kyoto (JP); Hazuki
Okabayashi, Kyoto (JP); Hiroyuki
Murata, Shiga (JP); Takatsugu Sawai,
Osaka (JP); Hiroyuki Shigeta, Osaka
(IP)

(73) Assignee: PANASONIC INTELLECTUAL
PROPERTY MANAGEMENT CO.,
LTD., Osaka (JP)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 343 days.

(21) Appl. No.: 13/718,670
(22) Filed: Dec. 18, 2012

(65) Prior Publication Data
US 2013/0104137 Al Apr. 25,2013
Related U.S. Application Data

(63) Continuation of application No. PCT/JP2011/000325,
filed on Jan. 21, 2011.

(30) Foreign Application Priority Data
Jul. 2,2010 (IP) cceoveivieiiececiceen 2010-151533

(51) Imt.ClL

GO6F 9/455 (2006.01)

GO6F 9/48 (2006.01)

GO6F 11/00 (2006.01)

GO6F 9/50 (2006.01)
(52) US.CL

CPC GO6F 9/4887 (2013.01); GO6F 9/4881

(2013.01); GO6F 9/5038 (2013.01); GO6F
11/008 (2013.01)

100

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,293,620 A * 3/1994 Barabashetal. ... 718/102
5,553,246 A * 9/1996 Suzuki .. 710/107
6,085218 A * 7/2000 Carmon 718/107

(Continued)

FOREIGN PATENT DOCUMENTS

Jp 9-231181 9/1997
Jp 2000-112773 4/2000
(Continued)
OTHER PUBLICATIONS

International Search Report issued Apr. 26, 2011 in International
(PCT) Application No. PCT/JP2011/000325.

Primary Examiner — Eric C Wai
(74) Attorney, Agent, or Firm — Wenderoth, Lind & Ponack,
LL.P.

(57) ABSTRACT

A multiprocessor system includes a plurality of processors,
each including a task scheduler that determines a task execu-
tion order of tasks in a task set to be executed by the proces-
sors within a task period which is defined as a period in
repeated execution of the task sets; and a scheduler manage-
ment device having a command unit configured to issue a
command for at least one of the task schedulers to change the
task execution order, wherein each of the at least one of the
task schedulers, when receiving the command from the com-
mand unit, changes the task execution order of the corre-
sponding processor.

13 Claims, 18 Drawing Sheets

Multiprocessor system

Processor < Peaas

Processor

/X
\/

Scheduler
management
device

1
~

B

101

T»- 104 ‘103

Shared bus

102 l

T

| Shared resource (memory)

US 9,170,841 B2

Page 2
(56) References Cited FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS 1P 2002-73354 3/2002

Jp 2005-43959 2/2005

6,564,274 B1* 5/2003 Heathetal. 710/105 P 2007-226587 9/2007
8,370,846 B2* 2/2013 Hayashi ... 718/108
8,468,324 B2* 6/2013 Chenetal.cceoenee. 712/205
2004/0216110 Al™* 10/2004 Nolletal.ccoceevennee 718/102

2005/0060709 A1 3/2005 Kanai etal. * cited by examiner

US 9,170,841 B2

Sheet 1 of 18

Oct. 27, 2015

U.S. Patent

(Atowsiu) 80iN0sal pBILYS

A 701
k4
SNq Pateys
-
o \ 101 A
£0T, AL
P S AOIABD P . o
ﬂ!:: » wsuwsbeuew -l | b
T JRInpayss Y 01
j ‘f \\,.m _r ,.
00g
105533014 | T 10sse004d
— ™ 901~
co1) 7
~ 007 LS AS 10SSa00udnINK
001"
T 'O14

Oct. 27, 2015

U.S. Patent

07 r& Q,

901 HUA DRIUNALY
vmm 80¢ T G0
\W«..v Veweprnton, mGN
IXSIL0D WSE] N\\//
{
]
IXBIL0D Vs m PUN BURDMS WSBL
.M M
IXBJUOD H5BL _w m £0c
s01 JIUNODD 3L \ 13{NPAYDS YseyL
tti”u..,.w. eeeren - TO7
20¢ J0SSID0.4d
202 o0z
¢ 'Ol

U.S. Patent Oct. 27, 2015

Sheet 3 of 18 US 9,170,841 B2
FI1G. 3
106 - 300 105
Scheduler management
device » 3}4
301 o] i3 19 Task Task informati Failure
Enstrug:txan comparison as n 9_’ ma ,‘m determination
unit unit analysis unit unit
304~
Completed task Failure pattern} | 'St;coraget_p er;;s:istgion
storage unit storage unit | | ormagg:; olaing
303" 306~
4 Contention . Task period
305~ | counter 30 | counter
A
104
FI1G. 4
— 220

222~ Task period 20
294 Execution

sequence of Yask C
processor 0
226 ... Execution

saguence of Task A ~» Task B
processor 1

U.S. Patent

Oct. 27, 2015

232

Sheet 4 of 18

FIG. 5

- 230

Fallure task
identification
information

Task B

US 9,170,841 B2

US 9,170,841 B2

Sheet 5 of 18

Oct. 27, 2015

U.S. Patent

§ YSe} JO UONEIYIOU UORSIdWOoD

Y SR 10 Uoneouiiou uonaiduwion
ER A Seemuny

i,
.
o,
.

sbuey2 Buynpsuns

A 2
1 J0ssa004d AQ
; Buissanoad ysel
uoizaidwod bulssasosd dsep | Ay
: H
w :
D MSeY 0 UOHRIJII0U U0IBdIoD _ :

0 Jossonoud Ag
Buissaooad ysey

{3y awi Buissenoud Msel)
JBIUNOD BLU W DU

$82002 SN IBAO UGHIDIIUCD ON

oze

paajueienb
[51 %521 AJBAB O
aougwoad

USUM

US 9,170,841 B2

Sheet 6 of 18

Oct. 27, 2015

U.S. Patent

g ¥sey Jo uonedynou uonajdwod

pBINPaLOS J0U S Y ¥SBeL
Apdoud abueyn

2]
g “ “ : T dossaoud Ag
VNmMImI 1 ¥ 4
o ” ; Buissasosd dysel
uonaduwod Buissaopid ysel : /2 S -
: CEE ; : e
: peInDaxs 9q 03
” : : paajueiend s
7 HSE] JO uonReIYnoU vonaiduon : m ¥ 1581 Usypmh
= /"./ “ ” , >

{3y 2w Buissanod xsey)
JOINGT BN Ul B

§5a228 sNg 18A0 UOISIJUOD ON

0 105522044 Ag
Buissonosd sey

6Ze"

US 9,170,841 B2

Sheet 7 of 18

Oct. 27, 2015

U.S. Patent

g %581 40 uonedYoU uosiduwon

AN

Y SR JO UORRILHOU UoHDdLU0D

g %se] 01 aAneal

R

_ ¥ YSE] 10} BW LBIS UORNISX3 YIS
< & 358 Jo| |V SEET 16 T
UOPINDBXS| LONIBXD " m " " 1 kommmuoa Ag
uopeidwos Buissanold xmmﬁ\w* ﬁw“wm W&uw H r....- M mmw.wwwﬁa SEL
ZEE 1€¢ w m m
- 2y %se] Jo mc_umu%wc uoRRdwWo) / “

{3y swyy Buissanosd sey)
JBIUNGD SUNY Ul DUUL

0 40s5300.4d Ag
Buissazoid wseyp

8 'OId

0ze

pouad UoHNIBXd
WS J0) D3RI
81 UL JUBDIYNS

U.S. Patent

Oct. 27,2015 Sheet 8 of 18

Schedule task

\L.

Task set in
confliction record matches
with scheduling
information?

5210

US 9,170,841 B2

U.S. Patent Oct. 27, 2015 Sheet 9 of 18 US 9,170,841 B2
FIG. 10
Scheduling ™
change request
received? No
5222 y 5224

Lower execution
precedence of
failed task by one

Determine initisl
execution seguence

End

US 9,170,841 B2

Sheet 10 of 18

Oct. 27, 2015

U.S. Patent

ainjie} %58 auUILIaIBg

MOUJIBA0 AHION

A

gees”

9¢78”"

dn 3unod

sgzs”

7 POMOJLIBAD 12IUNCD %SBL

pETS

Buissanoud Msey 1els

A

{483UN03 BZiRIIIUL)
SN0 pouad ¥Se) IIBARDY

<{ ey)

zezs”

17 "DId

oges

U.S. Patent Oct. 27, 2015 Sheet 11 of 18 US 9,170,841 B2

FIG. 12

Start

2240 5210
Every task
has issued compistion
notification?

Schedule task

5248
Task failure |
processing
FIG. 13
{ Start }
v 5250

Record failed task combination
Record number of confliction times

v .-S210

Schediule task

FIG. 14

Start
\ 5260

Perform task
processing

- S262 5264

Yes | Notify of task
©iprocessing completion

Scheduied
task completed?

US 9,170,841 B2

Sheet 12 of 18

Oct. 27, 2015

U.S. Patent

(Asowiaw) so4N0sas pairys

X roozot

3N
_-Hiuoneniqay
801 JB0IIU0D B0g
o1 onq poses
| L07 - .- ¥01 101 ;
€01 f
<D SAADR e &
N - wawsbeueww ~ b
N BNPaLPS o
A \\ *
00g
10858004d | el | L .
90T T
00T WIDISAS J055330I3NN
001"

GT 'Ol

US 9,170,841 B2

Sheet 13 of 18

Oct. 27, 2015

U.S. Patent

801 0T, TOT,

o o i | SNg padeys

: IB04IU0D sng E

i H
Pyl HMRUORERIGH “

R syun BUIPIOH | |

- 3 “ 1N Buipioy AoLd 071 “
011 “ 4 Bun BuIpioy UCIBULIOMUL £248 PIIRYS L ”
1Ty > _
I R 3un Buipjoy uoRRULIOIU 0T | n
e T “
i H

i H

H H

! At !

; JUN UoNRINgIE - “

“ > SS3IIR 3UIN0SBY < ;

u “

i A “

H H

i H

T e e v o oo v ood v o e v oo e oo wee v oen ot wor ven s o voe v vun s e ot v oo v won vt oo rew o won e v ot ot S

COT o LOT e £OT o
¥ Y 2
91 "9I14

U.S. Patent Oct. 27, 2015 Sheet 14 of 18 US 9,170,841 B2

FIG. 17

5310

Issue hus lock request

v _-S312

Check lock infﬂrma—tion
holding unit

5318

Yes Notify task information

analysis unit of bus lock confliction

Bus lock information
is already held?

v S320
— ‘ S316 Read task information,
Continue record processing Count bus lock confliction times
on lock information
holding unit v 5322

Wait processing by processor
untit bus fock release

U.S. Patent

1004

403 .

Oct. 27,2015 Sheet 15 of 18 US 9,170,841 B2
FIG. 18
System LS v
.1.402
Multiprocessor External data
system 1/0 unit
,,,,,,, -401
System bus
-404
External storage External control
device connection device connection
unit unit
) A

US 9,170,841 B2

Sheet 16 of 18

Oct. 27, 2015

U.S. Patent

505
RSN aoiABp 9beI0Is”
} eomnap) IRUIBING
- wndino opny| 706
« IoIABP , 157 WaisAs nding o4uo00
ndinc ospiInl€ DNABP |RUIDIXT
giep N > ndu JoRuod
§ jseapeoig T O0IABD RLUSXT
PUVWANVAR IS 0ov~" 105"
N /
uoisiAsay feubig
005
61 'Ol

US 9,170,841 B2

Sheet 17 of 18

Oct. 27, 2015

U.S. Patent

Vse1 o
g MSE] JO UOIIEIYIIoU UoHB|dWIc) uoIRDIIIOU UoPBIdWOD
Uy \
< r SO
g Asel v v 1 J0sssa0ad Ag
ASBL 1| Buissanoad ysel
1 4o0ssan0ad Ag Buissanald xsey Jo ainped i v T T e
¢ ! s e’
, TEE |
UOHDIJLOD SSA00R SNY 03 9Nnp swiy Builem v vse) " H
Y ¥SE3 JO UCIEIIIOU Uos|dwo)
B ;
5 wse g 40sse004d Ag

JBIUN0D BUHY W1 LY

S52028 SNQ JBA0 UOIIDIJUOD

Suissanotd yse)

H
(3nu 3w Buissanold ysey) \\”
!
i
;
H
'
1
¥
H

0¢ "OId

0zE~

U.S. Patent Oct. 27, 2015 Sheet 18 of 18 US 9,170,841 B2

Write timing
for processor 0

FIG. 21

Task A, Task A,

Write timing
for processor 1

Time

VY VYV Y VY 102

Shared memory

AAAAAAANS

Task By Task B,

Time

US 9,170,841 B2

1
MULTIPROCESSOR SYSTEM FOR
COMPARING EXECUTION ORDER OF
TASKS TO A FAILURE PATTERN

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation application of PCT International
Application No. PCT/JP2011/000325 filed on Jan. 21, 2011,
designating the United States of America, which is based on
and claims priority of Japanese Patent. Application No. 2010-
151533 filed on Jul. 2, 2010. The entire disclosures of the
above-identified applications, including the specifications,
drawings and claims are incorporated herein by reference in
their entirety.

FIELD

The present invention relates to a multiprocessor system,
and particularly to a multiprocessor system which repeatedly
executes a task set including a plurality of tasks.

BACKGROUND

Conventionally, there has been known a technology for
scheduling a plurality of tasks so as to complete the tasks
within a predetermined limited time.

For example, Japanese Unexamined Patent Application
Publication No. 2002-73354 discloses a technology in which
the number of events is recorded for each task, the events
being such that the time it took for the task to be executed by
aprocessor exceeded (deadline miss) a predetermined limited
time in the past. For a task having a greater number of such
events, a higher execution priority is given to the task at the
time of scheduling so as to try to reduce the number of
deadline misses.

CITATION LIST
Patent Literature

Japanese Unexamined Patent Application Publication No.
2002-73354

Technical Problem

However, in the conventional multiprocessor system in
which a plurality of processors is executed in coordination, a
task failure due to confliction between processors for access
to a shared resource cannot be prevented. As a result, a real-
time performance cannot be guaranteed for such a system.

FIG. 20 illustrates a time chart example of a task failure due
to confliction between processors for access to a shared
resource (for example, shared memory) in a multiprocessor
system.

As illustrated in FIG. 20, as a consequence of confliction
for simultaneous access to a shared resource during task
processing executed by each processor (denoted as task pro-
cessing 320 by processor 0 and task processing 330 by pro-
cessor 1 in FIG. 20), the task is not completed within an
estimated time period, thereby causing a processing failure.

More particularly, bus access confliction has occurred
between task A331 in execution on processor 1 and task 0321
in execution on processor 0.

Consequently, in order to execute task A331, processor 1
must wait until the bus access by task C321 is completed.

10

15

20

25

30

35

40

45

50

55

60

65

2

Because of the waiting time, it takes a longer time than origi-
nally estimated for processor 1 to execute task A331.

Consequently, the processing of task B332, which is
expected to be completed by processor 1 before the subse-
quent switching between task contexts, cannot be completed
within a task period 222, and thus execution of task B332
fails.

FIG. 21 illustrates an example of task processing delay
caused by access confliction between processors in a multi-
processor system.

Asillustrated in FIG. 21, in the case where task Al and task
B1 frequently perform write processing to the shared
resource (a shared memory 102 in FIG. 21), confliction fre-
quently occurs between tasks, and consequently, the process-
ing time of task. Al and task B1 is extended, and thus the
efficiency in task processing by processor 0 and processor 1 is
reduced.

That is to say, although an ideal task processing time may
be previously estimated theoretically, access confliction to
the shared resource such as a shared memory in a multipro-
cessor system is not assumed in the conventional technology.
Because of this, when real-time processing is required, it is
difficult to guarantee real-time performance.

SUMMARY

The present invention solves the above-described conven-
tional problem, and particularly, it is an object of the invention
to provide a multiprocessor system which repeatedly
executes task sets each including a plurality of tasks, the
multiprocessor system being able to previously detect a
schedule for which execution of tasks scheduled to be com-
pleted within a task period cannot be completed within the
task period because of access confliction, and to avoid a task
processing failure so as to reliably guarantee the performance
for real-time processing.

Solution to Problem

In order to achieve the above-described object, an aspect of
the present invention provides a multiprocessor system which
repeatedly executes task sets, each including a plurality of
tasks, the multiprocessor system including: a plurality of
processors, each including a task scheduler that determines a
task execution order of the tasks in a task set to be executed by
the processors within a task period which is defined as a
period in repeated execution of the task sets, and processors
that execute the respective tasks; and a scheduler manage-
ment device having a command unit configured to issue a
command for at least one of the task schedulers to change the
task execution order, wherein each of the task schedulers,
when receiving the command from the command unit,
changes the task execution order of the processors.

With the above configuration, the execution order of the
tasks to be executed by the processors is changed based on a
command from the scheduler management device. Conse-
quently, a difference occurs between execution times of tasks
which have access such as writing to the same common
resources, and thus access confliction and a failure in task
processing can be avoided.

More preferably, the scheduler management device further
includes a task comparison unit and a failure pattern storage
unit, the failure pattern storage unit is configured to store, as
failure patterns, one or more pieces of information including
a task execution order of tasks, processor ID of each of pro-
cessors which execute the respective tasks, and a task period
which are included in a task set, the task set such that task set

US 9,170,841 B2

3

processing, which is per-period processing in repeated execu-
tion of the task sets, is not completed within the task period
due to access confliction between processors, a first task
scheduler of the task schedulers notifies the task comparison
unit of periodic scheduling information which includes, in a
task set, (i) a task execution order of tasks, (ii) processor ID of
each of'is processors which execute the respective tasks, and
(iii) a task period, the task comparison unit is configured to
determine whether or not the periodic scheduling information
notified matches one of the failure patterns by comparing the
periodic scheduling information notified with the failure pat-
terns, and when the periodic scheduling information notified
matches one of the failure patterns, the command unit is
configured to issue a command for at least one of the task
schedulers to change the task execution order included in the
periodic scheduling information.

With the above configuration, the scheduler management
device stores failure patterns in the failure pattern storage
unit, the failure patterns each being a task execution order
with which task processing fails. Therefore, by the task infor-
mation analysis unit comparing the execution order of the
tasks determined by the scheduler with the failure patterns,
the scheduler management device can detect a schedule
which fails before executing the tasks. Furthermore, in the
case of a failure, the scheduler management device com-
mands a scheduler to perform rescheduling by changing the
execution order of the tasks. Consequently, a task processing
failure can be avoided beforehand.

Specifically, the scheduler management device determines
whether or not a task set processing is completed within the
task period, the task set processing being per-period process-
ing in repeated execution of the task sets, and when it is
determined that the task set processing is not completed
within the task period, the command unit is configured to
issue a command for the at least one of the task schedulers to
change the task execution order.

More specifically, the scheduler management device fur-
ther includes a task period counter, a completed task storage
unit, and a failure determination unit, each of the processors
notifies the scheduler management device of task identifica-
tion information of a task for which the task set processing is
completed, a task set processing being per-period processing
in repeated execution, the completed task storage unit is con-
figured to store the task identification information of the task
for which the task set processing notified is completed, the
task period counter counts a number of cycles since the pro-
cessors start execution of the task set, the failure determina-
tion unit is configured to determine whether or not a failure
task is present which is not stored in the completed task
storage unit at a moment when the number of cycles exceeds
the task period, the failure task being one of the tasks in the
task set, and when the determination indicates that at least the
failure task is present, the command unit is configured to issue
a command for at least one of the task schedulers to change
the task execution order.

In addition, the scheduler management device further
includes a failure pattern storage unit and a task comparison
unit, in the case where the failure determination unit deter-
mines that a failure task is included in an executed task set, the
scheduler management device stores, in the failure pattern
storage unit, as a failure pattern, information including a task
execution order of tasks contained in the task set, processor
ID of each of processors which execute the respective tasks,
and a task period which are included in the task set, a first task
scheduler of the task schedulers notifies the task comparison
unit of periodic scheduling information which includes a task
execution order of tasks included in a task set to be executed,

25

40

45

55

4

a processor ID of a processor which executes corresponding
one of the tasks, and the task period, the task comparison unit
is configured to determine whether or not the periodic sched-
uling information notified matches one of the failure patterns
by comparing the periodic scheduling information notified
with the failure patterns, and when the periodic scheduling
information notified matches one of the failure patterns, the
command unit is configured to issue a command for at least
one of the task schedulers to change the task execution order
contained in the periodic scheduling information.

Thus, the scheduler management device learns execution
orders of tasks with which task processing fails from failure
cases of task processing. Consequently, the scheduler man-
agement device can automatically update the failure patterns
to be stored in the failure pattern storage unit.

In addition, the command to change the task execution
order may contain task identification information of the at
least the failure task, and the one of the task schedulers which
has received the command may change the task execution
order, so that a task corresponding to the task identification
information has an execution priority lower than an execution
priority of another task to be executed by a processor which
executes the task corresponding to the task identification
information.

Thus, particularly a certain task for which task processing
has failed can be designated, and the execution priority of the
certain task can be made lower than that of another task to be
executed by the same processor. Consequently, the execution
time of a task which causes access confliction can be delayed
atthe time of rescheduling after a task processing failure so as
to avoid confliction, and thus a task failure can be avoided at
the subsequent task execution.

In addition, the multiprocessor system may further
includes: a shared bus having a bus controller; and a shared
resource in which the processors write information via the
shared bus, wherein the bus controller includes a holding unit
configured to hold task identification information of two or
more confliction tasks which are write operations scheduled
to be performed on the shared resource by the respective
processors on overlapping time intervals, and the command
unit includes, in the command to change the task execution
order, the task identification information of the confliction
tasks held in the holding unit, the confliction tasks each being
the failure task.

The shared resource may be one of a shared memory and an
input/output interface.

Thus, when task processing fails, a case where the task
processing failure is caused by access confliction can be
identified based on the information from the shared bus.
Change of task execution order is primarily eftective in avoid-
ing confliction for access to the shared resource. Conse-
quently, by identifying a task which has failed because of
access confliction and changing the execution priority of the
task, a task processing failure can be reliably avoided in the
next task execution.

The present invention may be achieved not only as a mul-
tiprocessor system, but also as an information processing
method which includes steps defined by the operations of
distinctive units included in the multiprocessor system, or as
a program which causes a computer to execute such distinc-
tive steps. It is needless to state that such a program can be
distributed via a recording medium such as a CD-ROM or a
transmission medium such as the Internet.

In addition, the present invention may be achieved as a
system LSI including such a multiprocessor system.

Advantageous Effects

In a multiprocessor system which repeatedly executes a
task set including a plurality of tasks, a schedule for which

US 9,170,841 B2

5

execution of tasks cannot be completed within the task period
due to access confliction can be previously detected so as to
avoid a task processing failure, thereby being able to provide
a multiprocessor system which reliably guarantees the per-
formance for real-time processing.

BRIEF DESCRIPTION OF DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-
tion thereof taken in conjunction with the accompanying
drawings that illustrate a specific embodiment of the present
invention.

FIG. 1 is a configuration diagram of a multiprocessor sys-
tem in Embodiment 1 of the present invention.

FIG. 21is aconfiguration diagram ofa processor in Embodi-
ment 1 of the present invention.

FIG. 3 is a configuration diagram of a scheduler manage-
ment device in Embodiment 1 of the present invention.

FIG. 4 is a table illustrating exemplary periodic scheduling
information according to Embodiments 1 to 3 of the present
invention.

FIG. 5 is a table illustrating an exemplary rescheduling
command according to Embodiments 1 to 3 of the present
invention.

FIG. 6 is a diagram illustrating an example in which a task
processing failure caused by access confliction can be
avoided by the multiprocessor system according to Embodi-
ments 1 to 3 of the present invention.

FIG. 7 is a reference diagram illustrating another example
of failure avoidance of task processing according to Embodi-
ments 1 to 3 of the present invention.

FIG. 8 is a reference drawing illustrating still another
example of failure avoidance of task processing according to
Embodiments 1 to 3 of the present invention.

FIG.9 is a flowchart illustrating the flow of task scheduling
processing in Embodiment 1 of the present invention.

FIG. 10 is a flowchart illustrating the flow of detailed task
scheduling processing in Embodiment 1 of the present inven-
tion.

FIG. 11 is a flowchart illustrating the flow of per-period
processing in repeated execution of a task set in Embodiment
1 of the present invention.

FIG. 12 is a flowchart illustrating the flow of task failure
determination processing in Embodiment 1 of the present
invention.

FIG. 13 is a flowchart illustrating the flow of task failure
processing in Embodiment 1 of the present invention.

FIG. 14 is a flowchart illustrating the flow of task process-
ing in Embodiment 1 of the present invention.

FIG. 15 is a configuration diagram of a multiprocessor
system according to Embodiment 2 of the present invention.

FIG. 16 is a configuration diagram of a bus controller
according to Embodiment 2 of the present invention.

FIG. 17 is a flowchart illustrating the flow of bus lock
access arbitration processing according to Embodiment 2 of
the present invention.

FIG. 18 is a configuration diagram of a system LS having
a multiprocessor system according to Embodiment 3 of the
present invention.

FIG. 19 is a configuration diagram of a digital television
using the system LSI having the multiprocessor system
according to Embodiment 3 of the present invention.

FIG. 20 is a diagram illustrating an example of a task
processing failure in a conventional technology.

15

30

40

45

50

65

6

FIG. 21 is a diagram illustrating an example of a task
processing delay in a conventional technology.

DESCRIPTION OF EMBODIMENTS

Hereinafter, a multiprocessor system 100 in an embodi-
ment of the present invention will be described with reference
to the accompanying drawings.

Embodiment 1

FIG. 1 is a configuration diagram of a multiprocessor sys-
tem 100 in Embodiment 1 of the present invention. The mul-
tiprocessor system 100 is a multiprocessor system which
repeatedly executes a task set including a plurality of tasks.

As illustrated in FIG. 1, the multiprocessor system 100
includes two processors 200 with a virtual multi-task process-
ing mechanism, a shared bus 101, a shared resource 102, and
a scheduler management device 300.

More specific description is as follows: the processors 200
are each connected to the shared bus 101 via a bus access 103,
and can be accessed to the shared resource 102 via the shared
bus 101.

As the shared resource 102, for example, a shared memory
or an I/O interface for input/output may be used.

The processors 200 are each connected to the scheduler
management device 300 via an analysis result bus 106 and a
task information bus 105. The two processors included in the
multiprocessor system 100 are collectively called “processor
2007

Access confliction information detected on the shared bus
101 is transmitted to the scheduler management device 300
via an access confliction bus 104.

The scheduler management device 300 analyzes task infor-
mation received from each of the processor 200 via the task
information bus 105, and transmits an analysis result of
access confliction to each of the processor 200 via the analysis
result bus 106.

The processor 200 which has received the analysis result of
access confliction from the scheduler management device
300 performs task scheduling necessary for each of the pro-
cessor 200 (i.e., a plurality of processors in the processor 200)
s0 as to avoid access confliction, and thus avoids a processing
failure on the following scheduling.

FIG. 2 is a configuration diagram of the processor 200
having a virtual multi-task processing mechanism in Embodi-
ment 1 of the present invention.

As illustrated in FIG. 2, the processor 200 includes a task
scheduler 201, a time counter 202, a task switching unit 203,
a task context 204, and an arithmetic unit 205.

The task scheduler 201 switches between the task contexts
204 tri assigned to the arithmetic unit 205 using the task
switching unit 203, and completes processing of a plurality of
tasks within a predetermined time period.

When the task context 204 is switched, the time counter
202 is initialized.

The task scheduler 201 is connected to the time counter 202
and the task switching unit 203.

The task scheduler 201 receives a remaining task execution
time 206 from the time counter 202. When the value of the
remaining task execution time 206 becomes zero, the task
scheduler 201 generates task information including a task ID,
aprocess 1D, a processor ID, a task priority, and transmits the
task information to the task switching unit 203.

Simultaneously, the task scheduler 201 transmits the task
information to the scheduler management device 300 via the
task information bus 105.

US 9,170,841 B2

7

The task switching unit 203 receives the task information
from the task scheduler 201, selects and acquires necessary
task context 204 via a task context connection bus 208, and
supplies the task context to the arithmetic unit 205 connected
via an arithmetic unit connection bus 209.

The arithmetic unit 205 performs arithmetic based on the
task context supplied from the task switching unit 203, and
consequently starts access to the shared bus 101 via the bus
access 103.

FIG. 3 is a configuration diagram of the scheduler manage-
ment device 300 in Embodiment 1.

As illustrated in FIG. 3, the scheduler management device
300 includes a task information analysis unit 301, a task
period counter 302, a completed task storage unit 303, a
failure pattern storage unit 304, a confliction counter 305, and
a storage permission information holding unit 306.

The task information analysis unit 301 is connected to the
processor 200 via the task information bus 105, and receives
task information obtained from each ofthe processor 200 (for
example, a task completion notification, a task 1D, a sched-
uling completion notification, and periodic scheduling infor-
mation including task attributes, execution order of tasks, the
processor ID of a processor which performs each task, a task
priority, a task period of a plurality of tasks contained in a task
set to be performed within a task period).

Here, the task set includes a plurality of tasks, and defines
a set of tasks to be executed as a unit repeatedly by the
processor 200.

The task period is a predetermined time period which is
defined as a period of repeated execution of task sets.

The task information analysis unit 301 is connected to the
task period counter 302, the completed task storage unit 303,
the failure pattern storage unit 304, and the storage permis-
sion information holding unit 306.

The task information analysis unit 301 has a command unit
310, a task comparison unit 312, and a failure determination
unit 314.

The task comparison unit 312 compares periodic schedul-
ing information acquired via the task information bus 105
with a failure pattern acquired from the failure pattern storage
unit 304.

Here, the failure pattern is a record of past periodic sched-
uling information 220 which indicates that execution of all
the tasks contained in a task set was not completed within a
task period and thus failed.

In the case where the failure pattern includes the acquired
periodic scheduling information 220 as a result of the com-
parison by the task comparison unit 312, the command unit
310 commands each of the processor 200 to change schedul-
ing, via the analysis result bus 106.

Each of the processor 200 which has received the com-
mand of scheduling change performs task rescheduling such
as schedule cancellation, pending, increment/decrement of
the time counter of a specific task, in addition to the change of
task execution order, and transmits new periodic scheduling
information 220 and a scheduling completion notification to
the task information analysis unit 301 via the task information
bus 105.

The task comparison unit 312 and the command unit 310
repeat the above process until the task execution order con-
tained in the periodic scheduling information 220 does not
match with the failure pattern stored in the failure pattern
storage unit 304.

The failure determination unit 314 determines whether or
not all the tasks to be processed within one task period have
been completed.

10

15

20

25

30

35

40

45

50

55

60

65

8

Specifically, when the task period counter 302 overtlows
(or underflows when a down counter is used), the failure
determination unit 314 determines whether or not the task
completion notification sent from the processor 200 is stored
in the completed task storage unit 303 for each task contained
in a task set.

When a corresponding task completion notification is
stored in the completed task storage unit 303 for each of all
the tasks contained in the task set, the failure determination
unit 314 determines that the entire task processing within the
task period has been completed. Subsequently, the command
unit 310 makes a scheduling request to the processor 200
again as needed in order to perform the next task set.

On the other hand, when there is at least one task for which
a task completion notification has not been recorded, the
failure determination unit 314 determines that the task pro-
cessing has failed.

In this case, the task information analysis unit 301 stores
the periodic scheduling information and the number of con-
flictions into the failure pattern storage unit 304, the number
of conflictions being retrieved from the confliction counter
305 for each task contained in the task set. The command unit
310 notifies the processor 200 of a scheduling change com-
mand, which is a command of a request for rescheduling.

The task scheduler 201 in the processor 200 which has
received a request for rescheduling upon a scheduling change
command notifies the task information analysis unit 301 of,
for example, a modified execution order of the tasks con-
tained in failed periodic scheduling information as new peri-
odic scheduling information after rescheduling.

The task scheduler 201 which has performed rescheduling
notifies the other processors 200 of the new periodic sched-
uling information.

The task period counter 302 is a counter which measures
the execution cycle of the processor 200 for a task contained
in a task set.

The task information analysis unit 301, when causing the
processor 200 to start execution of a task set, initializes the
task period counter 302 to start counting, and simultaneously,
cancels the scheduling change request which has been sent to
the processor 200 via the analysis result bus 106.

Here, initialization of the task period counter 302 is to reset
the counter value to the initial value ofthe counter, the counter
value being an overflow value of the task period counter 302
after an elapsed time of a task period.

For example, if the maximum value of the task period
counter 302 is 255 and the task period is 50, the initial value
of the task period counter 302 is set to 205.

Subsequently, the processor 200 starts processing of a
scheduled task.

While the processor 200 performs the task processing, the
task period counter 302 continues counting up (or counting
down until the counter underflows when a down counter is
used) in the task period until the counter overflows.

After the overflow, the task period counter 302 notifies the
failure determination unit 314 that the task period has
elapsed.

As described above, for each task contained in the task set,
the completed task storage unit 303 stores a result as to
whether the task has been completed.

More specifically, the completed task storage unit 303
assigns the tasks to respective bits of the register and initial-
ized the bits to 0, and sets a corresponding assigned bit to 1
each time a task completion notification outputted from the
processor 200 is received. In this manner, a task completion
notification can be recorded.

US 9,170,841 B2

9

The task completion notification can be outputted, for
example, when hardware satisfies any user-defined condi-
tions such as having a less overflow value set in the counter. In
addition to the any conditions, a task completion notification
can be outputted, for example, by a user executing a command
code written in a program for informing of a task completion,
and thus a programmable task processing completion control
by a user can be achieved.

The failure pattern storage unit 304 stores the above-de-
scribed failure pattern.

The confliction counter 305 is connected to the shared bus
101 via the access confliction bus 104, and counts and holds
the number of conflictions that occurred for each task when a
plurality of tasks performed by respective processors 200
have each access to the shared bus 101 simultaneously.

The storage permission information holding unit 306 holds
storage permission information which is the conditions
applied when a failure pattern is stored in the failure pattern
storage unit 304.

As the storage permission information, example, designa-
tion of permission start time may be used. In this case, the
failure pattern storage unit 304 cancels the failure patterns
discards the permission start time.

An exclusive task may be designated as the storage per-
mission information. In this case, the failure pattern storage
unit 304 does not store the failure of a task which has task
identification information designated as an exclusive task.

A maximum storage number of the failure pattern may be
designated as the storage permission information. In this
case, the failure pattern storage unit 304 manages the number
of failure patterns to be stored in accordance with a rule such
as a FIFO (First In First Out).

The failure patterns stored in failure pattern storage unit
304 may be stored in a compressed format as needed. In
addition, not only a combination of task as a failure factor
causing confliction, but also e.g., bus access information
causing the confliction may be directly recorded as a failure
pattern.

Thus, a possibility of a task failure can be determined based
on a monitored state of the access to the shared bus 101 in
addition to the task combination. A user may refer to and use
the failed task storage information as desired.

That is to say, the multiprocessor system 100 according to
the present embodiment is a multiprocessor system which
repeatedly executes a task set including a plurality of tasks.
Each of a plurality of processors (i.e., each of the processor
200) of the multiprocessor system 100 has the task scheduler
201 which determines an execution order of the tasks con-
tained in a task set to be performed by the processors within
the time period defined as a period of repeated execution of
task sets, and a processor which performs each task.

In addition, the multiprocessor system 100 includes the
scheduler management device 300 which has the command
unit 310 configured to command at least one of a plurality of
task schedulers 201 to change the task execution order.

Upon receiving a command from the command unit 310,
each of the task schedulers 201 changes the task execution
order of a plurality of processors.

Specifically, the scheduler management device 300 further
includes the task comparison unit 312 and the failure pattern
storage unit 304.

The failure pattern storage unit 304 stores, as a failure
pattern, at least one set of an execution order of tasks, the
processor ID of the processor which performs each task, and
information including the task period, the execution order of
tasks being contained in a task set in which per-period task set

10

15

20

25

30

35

40

45

50

55

60

65

10

processing in repeated execution of task sets has not been
completed within a task period because of access confliction
of a plurality of processors.

A first task scheduler in the task schedulers 201 notifies the
task comparison unit 312 of an execution order of the tasks
contained in a task set, the processor 1D of the processor
which performs each task, and periodic scheduling informa-
tion including the task period.

The task comparison unit 312 compares the task execution
notified with the failure patterns sequence so as to determine
whether or not the task execution order matches with one of
the failure patterns.

In the case where a matched failure pattern is found as a
result of the determination made by the task comparison unit
312, the command unit 310 commands at least one of the task
schedulers 201 to change the task execution order contained
in the periodic scheduling information.

On the other hand, in the case where a matched failure
pattern is not found, the scheduler management device 300
causes the processor 200 to start execution of the task set.

Subsequently, the scheduler management device 300
determines whether or not the task set processing has been
completed within a task period 222. In the case where it is
determined that the task set processing has not been com-
pleted within the task period 222, the command unit 310
commands the task schedulers 201 to change the task execu-
tion order.

More specifically, the scheduler management device 300
further includes the task period counter 302, the completed
task storage unit 303, and the failure determination unit 314.

Each of the processor 200 notifies the scheduler manage-
ment device 300 of the task identification information of the
tasks for which the per-period processing in repeated execu-
tion has been completed.

The completed task storage unit 303 stores the task iden-
tification information notified of the task for which the per-
period processing in repeated execution has been completed.

The task period counter 302 counts the number of cycles
after the processor 200 starts execution of a task set.

The failure determination unit 314 determines whether or
not there exists a failed task which is not stored in the com-
pleted task storage unit 303 and yet is one of a plurality of
tasks contained in a task set at the time when the number of
cycles exceeds the task period 222.

When there is one or more failed tasks as a result of the
determination, the command unit 310 commands at least one
of'the task schedulers 201 to change the task execution order.

When it is determined that there is at least one failed task,
the scheduler management device 300 stores failed periodic
scheduling information 220 as a new failure pattern into the
failure pattern storage unit 304.

A scheduling change command 230, which is a command
of'change of task execution order, contains task identification
information of one or more failed tasks, and the task sched-
uler which has received the command changes the task execu-
tion order, so that the execution priority of a task correspond-
ing to the task identification information contained in the
command comes after the execution order of any other task
which is performed by the same processor.

The task period counter 302 can be achieved using a reg-
ister, for example. In that case, the event that the execution

US 9,170,841 B2

11

cycle of the processor 200 exceeds the task period is imple-
mented as an interrupt associated with an overflow of the
counter.

Hereinafter, more detailed description is given.

FIG. 4 illustrates an example of periodic scheduling infor-
mation 220 which is transmitted from the task scheduler 201
to the task information analysis unit 301 via the task infor-
mation bus 105.

As illustrated in FIG. 4, the periodic scheduling informa-
tion 220 includes a task period 222, an execution order 224 of
processor 0, and an execution order 226 of processor 1.

The task period 222 is a time interval within which per-
period processing in repeated execution of all tasks contained
in a task set (a set consists of three tasks; task A, task B, and
task C in this example) should be completed.

For example, in the case where the task period 222 is
designated to be 20 cycles, when the execution cycle of the
task set exceeds 20 cycles, the execution of the task fails.

The execution order 224 of processor 0, and the execution
order 226 of processor 1 indicate the execution order of tasks
to be performed by the respective processors.

For example, in the case where the execution order 226 of
processor 1 is such that task A is designated to be the first task,
and task B is designated to be the second task, processor 1
starts execution of task A first, and after completing task A,
processor 1 executes task B.

In the case where only task C is designated as in the execu-
tion order 224 of processor 0, processor 0 executes task C.

FIG. 5 is a table illustrating an example of the scheduling
change command 230 sent from the command unit 310 to the
task scheduler 201 for requesting the change of a task execu-
tion order.

As illustrated in FIG. 5, the scheduling change command
230 contains failure task identification information 232.
Here, task B is designated as the failure task identification
information 232.

For example, suppose that a task has failed after executing
a task set based on the periodic scheduling information 220
illustrated in FIG. 4.

Subsequently, when task B is designated as the failure task
identification information 232 in the scheduling change com-
mand 230 which is notified to the task scheduler 201 from the
command unit 310, the task scheduler 201 lowers the execu-
tion priority of task B in the execution order 226 of processor
1.

Consequently, periodic scheduling information with the
execution orders of task A and task B reversed is notified to
the task information analysis unit 301 from the task scheduler
201.

The scheduling change command 230 does not need to
contain the failure task identification information 232. In this
case, the task scheduler 201 which has received the schedul-
ing change command 230 may change the execution order of
two tasks which are, for example, randomly selected from the
tasks to be executed in the processor 200.

Alternatively, the task scheduler 201 may replace the task
executed last with the task executed second to the last, both
tasks belonging to the tasks to be executed in the processor
200.

The scheduling change command 230 by the command
unit 310 can be achieved by an interrupt specifically.

The command unit 310 may notify all processors 200 of the
scheduling change command 230, or notify only a specific
processor of the scheduling change command 230 by desig-
nating an identifier.

FIG. 6 is a diagram illustrating an example in which a task
processing failure caused by access confliction to the shared

15

25

35

40

45

55

65

12

resource 102 can be avoided by the multiprocessor system
100 according to the present embodiments.

Similarly to FIG. 20, FIG. 6 illustrates a manner how a task
set consisting of scheduled task A331, task B332, and task
(321 are executed.

However, in FIG. 6, the task execution order is changed by
the task scheduler 201, so that the execution order of task A
and task B are reversed. Consequently, the access confliction
between processor 0 and processor 1 is eliminated, and the
per-period processing in repeated execution for all the tasks in
the task set can be completed within the task period 222.

That is to say, according to the present embodiment with
the above-described configuration, the periodic scheduling
information 220 illustrated in FIG. 4, when applied, causes
access confliction between task A331 in execution by proces-
sor 1 and task C321 in execution by processor 0, and conse-
quently, a processing failure of task B332 scheduled to be
executed by processor 1 can be detected beforehand.

Specifically, the task comparison unit 312 compares the
periodic scheduling information 220 with the failure patterns
stored in the failure pattern storage unit 304, and determines
whether or not the periodic scheduling information 220 deter-
mined by the task scheduler 201 is contained in the failure
patterns.

As a result, when the periodic scheduling information 220
determined by the task scheduler 201 is contained in the
failure patterns, the task scheduler 201 performs rescheduling
s0 as to change the order of task A331 and task B332. Thus,
the bus access confliction between processor 0 and processor
1 is eliminated, thereby providing the effect that a processing
failure of task B to be executed by processor 1 can be pre-
vented.

All the information contained in the periodic scheduling
information 220 does not necessarily need to be stored in the
failure pattern storage unit 304 as failure patterns.

For example, at least task execution order should be stored.

In the case where a plurality of task sets exist and the task
periods 222 vary with task sets, the task period 222 in addition
to the task execution order is preferably stored in the failure
pattern storage unit 304.

FIG. 9 is a flowchart illustrating the outline of task sched-
uling processing for a single task in Embodiment 1.

First, the task scheduler 201 of one of the processor 200
performs task scheduling (S210). As the result, the periodic
scheduling information 220 is generated.

The generated periodic scheduling information 220 is sent
to the task information analysis unit 301.

In the task information analysis unit 301, the task compari-
son unit 312 compares the periodic scheduling information
220 with the failure patterns stored in the failure pattern
storage unit 304.

When a failure pattern matching with the sent periodic
scheduling information 220 is found as a result of the com-
parison made by the task comparison unit 312, the command
unit 310 in the task information analysis unit 301 notifies the
task scheduler 201 ofa scheduling change command 230 (Yes
in S214).

Upon receiving the scheduling change command 230, the
ask scheduler 201 performs task scheduling again (S210).

On the other hand, when the periodic scheduling informa-
tion 220 does not match with one of the failure patterns (No in
S214), the task information analysis unit 301 causes the task
period counter 302 to start counting, and simultaneously,
commands the processor 200 to execute the task set based on
the scheduling according to the periodic scheduling informa-
tion 220 notified to the processor 200 (S216).

US 9,170,841 B2

13

Subsequently, the command unit 310 in the task informa-
tion analysis unit 301 notifies the scheduling change com-
mand 230 to the task scheduler 201 in the case where the
execution of the task set failed.

Upon receiving the scheduling change command (Yes in
S212), the task scheduler 201 performs scheduling again for
the failed task set (S210).

FIG. 10 is a flowchart illustrating the flow of task schedul-
ing processing performed by the task scheduler 201.

Upon receiving the scheduling change command 230 from
the command unit 310 in the task information analysis unit
301 (Yes in S220), the task scheduler 201 changes the execu-
tion priority of the task corresponding to the failure task
identification information 232 contained in the scheduling
change command 230. More specifically, the task scheduler
201 lowers the priority of the corresponding task by one
(S222).

On the other hand, for example, when execution of a task is
completed without a task failure, and then another task set is
executed for the first time, the task scheduler 201 performs
scheduling using conventional technology without receiving
a scheduling change command from the command unit 310
(No in S$220) (S224).

In this case, the task scheduler 201 performs scheduling
using a conventionally-known scheduling algorithm such as a
LST (Least Slack Time), so that per-period processing for
each of all the tasks contained in the task set is completed
within the task period 222 (S224).

FIG. 11 is a flowchart illustrating the flow of per-period
processing in repeated execution of task set in Embodiment 1.

The task period counter 302 activated by the task informa-
tion analysis unit 301 first initializes its counter as described
above (S230).

Simultaneously with the activation of the task period
counter 302, the task information analysis unit 301 causes the
processor 200 to start task processing (S232). However,
instead of the task information analysis unit 301, the task
period counter 302 may command the processor 200 to start
processing.

Next, the task period counter 302 counts the number of
cycles after commanding the processor 200 to start process-
ing (S235).

The task period counter 302 continues to count until the
counter overflows (No in S234).

Subsequently, when the count number exceeds (i.e., over-
flows) the maximum value of the counter (Yes in S234), the
task period counter 302 notifies the failure determination unit
314 of the counter overflow (5236).

Subsequently, the failure determination unit 314 which has
received the notification starts task failure determination pro-
cessing (S238).

FIG. 12 is a flowchart illustrating the flow of task failure
determination processing in Embodiment 1.

The failure determination unit 314 determines whether or
not completion of all the tasks (that is to say, all the tasks
contained in the task set currently executed) which are sched-
uled to be executed as per-period processing (that is to say, a
task to be executed within the current task period 222) in
repeated execution on the processor 200 is stored in com-
pleted task storage unit 303 (S240).

When all the tasks are completed (Yes in S240), the failure
determination unit 314 determines that the processing to be
executed in the current task period 222 are completed without
a failure. The failure determination unit 314 requests the next
task scheduling to each of the processor 200 via the analysis
result bus 106 if necessary (No in S210, S220 of FIG. 10).

40

45

14

On the other hand, when no task completion notification is
recorded in the completed task storage unit 303 (No in S240),
the failure determination unit 314 determines that processing
in the current task period 222 has failed, and starts task failure
processing (S248).

FIG. 13 is a flowchart illustrating the flow of task failure
processing in Embodiment 1.

When the failure determination unit 314 determines that
the is processing in the current task period 222 has failed, the
task information analysis unit 301 stores the periodic sched-
uling information 220 in the failure pattern storage unit 304.

At the same time, the task information analysis unit 301
retrieves counted value of the number of conflictions that
occurred in the current task period 222 for each task from the
confliction counter 305 connected to the task information
analysis unit 301 via the failure pattern storage unit 304, and
stores the counted value in the failure pattern storage unit 304
(S250).

Next, the task information analysis unit 301 requests the
second task scheduling via the analysis result bus 106 to the
task scheduler 201 of each of the processor 200 in order to
execute the task set containing failed task again (Yes in S210,
S220 of FIG. 10).

FIG. 14 is a flowchart illustrating the flow of task process-
ing executed by the processor 200 in Embodiment 1.

As described above, simultaneously with the activation of
the task period counter 302, the task information analysis unit
301 commands the processor 200 to start task processing (or
withdraws a task scheduling request), then each of the pro-
cessor 200 starts task processing (S260).

Each of the processor 200 continues to execute tasks unless
the task processing assigned to itself as a result of scheduling
is not completed (No in S262).

Every time the assigned task processing is completed (Yes
in S262), each of the processor 200 notifies the task informa-
tion analysis unit 301 of completion of the task via the task
information bus 105 (S264).

Subsequently, the completed task storage unit 303 con-
nected to the task information analysis unit 301 stores task
completion or task failure for each task as described above.

As described above, according to the present embodiment,
the task information analysis unit 301 compares the periodic
scheduling information 220 of the task notified from the task
scheduler 201 with the failure patterns stored in the failure
pattern storage unit 304, and a failure due to access conflic-
tion between processors can be detected beforehand.

Consequently, by performing rescheduling to change the
order of processing of failed task by the task scheduler 201,
access confliction between the processors can be avoided, and
thus a task processing failure can be avoided.

Embodiment 2

Hereinafter, a multiprocessor system 100 according to
Embodiment 2 of the present invention will be described with
reference to the accompanying drawings.

FIG. 15 is a configuration diagram of the multiprocessor
system 100 according to Embodiment 2 of the present inven-
tion.

In the present embodiment, the components similar to
those of Embodiment 1 are labeled with the same reference
symbols, and detailed description thereof is omitted.

The point of difference between Embodiment 2 illustrated
in FIG. 15 and the above-described Embodiment 1 is that a
bus controller 150 in Embodiment 2 includes an arbitration
unit 108, and the multiprocessor system 100 includes an
arbitration signal bus 107.

US 9,170,841 B2

15

FIG. 16 is a configuration diagram of the bus controller 150
including the arbitration unit 108 according to Embodiment
2.

The bus controller 150 is a controller which controls access
via the shared bus 101.

The bus controller 150 has the arbitration unit 108. The
arbitration unit 108 arbitrates access confliction over the
shared bus.

As illustrated in FIG. 16, the arbitration unit 108 includes
a resource access arbitration unit 112 and a holding unit 120.

The resource access arbitration unit 112 stores access
information i.e., lock information, shared area information,
and priority information of processors into the holding unit
120.

More specifically, the holding unit 120 has a lock informa-
tion holding unit 109, a shared area information holding unit
110, and a priority holding unit 111 configured to store the
lock information, the shared area information, and the prior-
ity information of processors, respectively.

The resource access arbitration unit 112 performs access
arbitration to the shared resource 102 per time period using
the respective pieces of stored information.

The resource access arbitration unit 112 makes access arbi-
tration using the Round Robin scheduling, for example, and
thus levels the number of shared resource wait per processor.

By making an arbitration in consideration of priority, the
resource access arbitration unit 112 may control priority of
access to the shared resource 102 by each of the processor
200.

A result of the arbitration of confliction is sent to the
scheduler management device 300 via the arbitration signal
bus 107. The number of conflictions and task information in
the current cycle are stored in the confliction counter 305 and
the failure pattern storage unit 304, respectively.

That is to say, the multiprocessor system 100 according to
the present embodiment further includes the shared bus 101
having the bus controller 150, and the shared resource 102 to
which a plurality of processors write information via the
shared bus 101.

In addition, the bus controller 150 has the holding unit 120
configured to hold the task identification information of two
or more confliction tasks which are executed by each of a
plurality of processors with overlapping time periods of writ-
ing to the shared resource 102.

With the above configuration, the command unit 310 can
include task identification information in the command of
change of task execution order, the task identification infor-
mation indicating the confliction task which is a failure task
and is currently held in the holding unit 120.

Consequently, the confliction is eliminated by reschedul-
ing and a failure is more likely to be prevented. In the case
where a failure occurs due to confliction, a timing of access to
the shared resource 102 can be shifted by changing the task
execution order.

The shared resource 102 may be at least one of a shared
memory and an I/O interface, for example.

The resource access arbitration unit 112 can send idle
information to the scheduler management device 300 via the
is arbitration signal bus 107, the idle information indicating
that access confliction has not occurred. Thus, the scheduler
management device 300 can recognize the resource conflic-
tion and the idle situation in the execution time of a task set.

Consequently, the scheduler management device 300 can
reduce access confliction by arbitrating the priority and

10

15

20

25

30

35

40

45

50

55

60

65

16

access timing, and can perform aggressive scheduling of
pending tasks at the time of idle.

Hereinafter, more detailed description will be provided.

FIG. 17 is a flowchart illustrating the flow of bus lock
access arbitration processing according to Embodiment 2.

Upon receiving a request of bus lock from a processor 200
requesting access (for example, write to the shared memory)
to the shared resource 102 (S310), the arbitration unit 108
checks the lock information holding unit 109 of the holding
unit 120 (S312), and determines whether or not the shared bus
101 is already locked (S314).

When the shared bus 101 is not locked yet as a result of the
determination (No in S314), the arbitration unit 108 stores
lock information for eliminating access to the shared bus 101
from other processors into the lock information holding unit
109, and allows the processor 200 requesting bus lock to
continue processing (S316).

On the other hand, when the shared bus 101 is already
locked (Yes in S314), the arbitration unit 108 notifies the task
information analysis unit 301 of the occurrence of bus lock
confliction (S318).

Upon receiving the notification, the task information
analysis unit 301 stores task information of a task in the
failure pattern storage unit 304, execution of the task being
interrupted due to confliction of access to the shared bus 101.
Upon receiving each notification, the task information analy-
sis unit 301 causes the confliction counter 305 to count-up so
as to count the number of conflictions (S320).

Subsequently, the arbitration unit 108 keeps interrupting
the processing of the processors other than the processor
which has first acquired (first made a request of bus lock) the
right of access to the shared bus 101, out of the processors
contained in the processor 200 until the lock information on
the shared bus 101 is deleted from the lock information hold-
ing unit 109 (S322).

According to the embodiment described above, the task
information analysis unit 301 can recognize whether or not
the cause of a failure of task execution is access confliction to
the shared resource 102. In addition, the task information
analysis unit 301 can utilize the result for rescheduling.

For example, as described above, the task information
analysis unit 301 may identify a task which has failed due to
access confliction, and the command unit 310 may command
the task scheduler 201 to change the execution priority of the
identified task.

If the cause of a failure of task processing is access con-
fliction, the confliction may be eliminated by changing the
execution priority of the task, and thus a failure is more likely
to be prevented.

That is to say, in Embodiment 1, the task information
analysis unit 301 performs scheduling using the information
on the processor as to whether or not a failure has occurred.
However, in the present embodiment, by performing sched-
uling using the confliction information on the bus, a failure is
more likely to be prevented.

Embodiment 3

Hereinafter, a system LSI and a digital television having a
multiprocessor system 100 according to Embodiment 2 ofthe
present invention will be described with reference to the
accompanying drawings.

FIG. 18 is a configuration diagram of a system L.SI 400
having the multiprocessor system 100 according to Embodi-
ment 3.

The system LSI 400 is used in, for example, digital televi-
sion, and is a super-multifunctional LSI which is manufac-

US 9,170,841 B2

17
tured by integrating a plurality of components on a single
chip. Specifically, the system [L.SI 400 includes a ROM (Read
Only Memory), a RAM (Random Access Memory), a micro-
processor, and the like

The system LSI 400 achieves the function by causing a
microprocessor to execute a computer program stored in a
RAM.

The multiprocessor system 100 in FIG. 18 may have the
same configuration as that of the multiprocessor system 100
described in Embodiment 1 or Embodiment 2, for example.

As illustrated in FIG. 18, the multiprocessor system 100 is
connected to a system bus 401. The system bus 401 is con-
nected to an external data input/output 402, an external stor-
age connection unit 403, and an external control device con-
nection unit 404.

FIG. 19 is a configuration diagram of a digital television
500 using the system LSI 400 in the present embodiment.

As illustrated in FI1G. 19, a digital television 500 is config-
ured with the system L.SI 400 using the multiprocessor sys-
tem 100 in the present embodiment, the system L.SI1400 being
connected to an external control device 501 such as a remote
controller, an external storage 502 such as a disk drive, a
receiving device 503 for broadcast data, an image output
device 504 such as a plasma panel or a liquid crystal panel for
television, and au audio output device 505 such as a speaker.

Asaresult, itis possible to apply the multiprocessor system
100 to the digital television 500 illustrated in FIG. 19.

That is to say, the system L.SI 400 according to the present
embodiment is a system LSI which repeatedly executes task
sets each including a plurality of tasks, the system L.SI includ-
ing the multiprocessor system 100, and the external data
input/output 402, the external storage connection unit 403,
the external control-equipment connection unit 404 which are
connected to the multiprocessor system 100 via the system
bus.

Each of the processor 200 of the multiprocessor system
100 has the task scheduler 201.

The multiprocessor system 100 includes the scheduler
management device 300 having the command unit 310 which
commands at least one of a plurality of task schedulers 201 to
change the task execution order.

Upon receiving a command from the command unit 310,
each of the task schedulers 201 changes the task execution
order of the corresponding processor 200.

In the above-described Embodiments 1 and 2, the task
scheduler 201 performs rescheduling by changing a task
execution order in response to a rescheduling command from
the command unit 310 of the task information analysis unit
301, however, the task scheduler 201 may perform resched-
uling by another method.

For example, as illustrated in FIG. 7, when task A331 is
guaranteed to be completed without time restriction of the
current task period, rescheduling may be made in such a
manner that a new task set is formed by removing task A331
from the original task set, and task B332 and task C321 are
executed within the task period 222.

Optionally, as illustrated in FIG. 8, when a sufficient time
can be allocated to the current task period, rescheduling may
be made in such a manner that the execution start time of each
of'task A331 and task B332 is delayed, and the task period is
extended accordingly, thereby avoiding access confliction
between task A331 and task C321.

The processing units of the multiprocessor system 100
according to the above-described Embodiments 1 to 3 are
each typically achieved as an LSI which is an integrated
circuit. These processing units may be individually imple-

10

15

20

25

30

35

40

45

50

55

60

18

mented as a single chip, or all or part of the processing units
may be implemented as a single chip.

Here, each processing unit is referred to as an LSI, but may
bereferred to asan IC, a system LSI, a super LSI, an Ultra LSI
depending on the degree of integration.

The circuit integration may be achieved not only with an
LSI but also with a dedicated circuit or a general-purpose
processor. FPGA (Field Programmable Gate Array) or a
reconfigurable processor for which connection and setup of
the circuit cells inside an L.SI can be reconfigured may be
utilized.

Furthermore, in the case where new circuit integration
technology which replaces the LSI is invented based on the
progress of semiconductor technology or other emerging
technology, each processing unit may be integrated using the
new technology.

Part or all of the function of the multiprocessor system 100
according to Embodiments 1 to 3 ofthe present invention may
be achieved by a processor such as a CPU executing a pro-
gram.

In addition, the present invention may be the above-men-
tioned program or a recording medium on which the above-
mentioned program is recorded. It is needless to state that the
program may be distributed via a transmission medium such
as the Internet.

At least part of the functions of the multiprocessor system
100 according to Embodiments 1 to 3 and the modification
may be combined.

The numerical values given above are for the purpose of
specifically describing the invention, and the present inven-
tion is not limited to the embodiments using the numerical
values. For example, the number of the processors of the
multiprocessor system 100 may be any integer greater than
two.

The connecting relationships between the components
herein are for the purpose of specifically describing the inven-
tion, and a connecting relationship which achieves the func-
tion of the present invention is not limited to the above con-
necting relationships.

Furthermore, various modifications of Embodiments 1 to
3, which occur to those skilled in the art without departing
from the spirit of the present invention are also included in the
invention.

Although only some exemplary embodiments of the
present invention have been described in detail above, those
skilled in the art will readily appreciate that many modifica-
tions are possible in the exemplary embodiments without
materially departing from the novel teachings and advantages
of the present invention. Accordingly, all such modifications
are intended to be included within the scope of the present
invention.

INDUSTRIAL APPLICABILITY

The present invention is useful in assurance of real-time
processing performance of a multiprocessor system which is
used in a computer embedded system or the like.

The invention claimed is:

1. A multiprocessor system configured to repeatedly
execute task sets that each include a plurality of tasks, the
multiprocessor system comprising:

a plurality of processors, each including a task scheduler
configured to determine a task execution order of the
tasks included in a corresponding one of the task sets that
is to be executed by a corresponding one of the proces-
sors within a task period which is defined as a time

US 9,170,841 B2

19

period in repeated execution of the task sets to be
executed by the processors; and
a scheduler management device having a command unit
configured to issue a command for causing at least one of
the task schedulers included in the plurality of proces-
sors to change the task execution order of the at least one
of the task schedulers,
wherein each of the at least one of the task schedulers is
configured to change the task execution order of the at
least one of the task schedulers in response to the com-
mand issued by the command unit, the task execution
order of the at least one of the task schedulers being
composed of the tasks included in the corresponding one
of'the task sets that is to be executed by the correspond-
ing one of the processors including the at least one of the
task schedulers, and
wherein the scheduler management device is configured
to:
compare first information regarding a task execution
order of tasks included in a task set on which task set
processing, which is processing for one repetition in
the repeated execution of the task sets, is not com-
pleted within the task period, and second information
regarding the task execution order determined by each
task scheduler included in the plurality of processors,
the first information being stored in the scheduler
management device; and
when the first information and the second information
match each other, issue a command for causing the at
least one of the task schedulers to change the task
execution order of the at least one of the task sched-
ulers.
2. The multiprocessor system according to claim 1,
wherein the scheduler management device further includes
atask comparison unit and a failure pattern storage unit,
wherein the failure pattern storage unit is configured to
store, as a failure pattern, information including (i) the
first information and (ii) information regarding a proces-
sor ID of the corresponding one of the processors which
executes the tasks in the corresponding one of the task
sets and the task period,
wherein the at least one ofthe task schedulers is configured
to notify the task comparison unit of periodic scheduling
information which includes (i) the task execution order
of'the tasks included in the corresponding one of the task
sets to be executed by the corresponding one of the
processors including the at least one of the task sched-
ulers, (ii) the processor ID of the corresponding one of
the processors including the at least one of the task
schedulers, and (iii) the task period,
wherein the task comparison unit is configured to deter-
mine whether or not the periodic scheduling information
matches the failure pattern by comparing the periodic
scheduling information with the failure pattern, and
wherein, when the periodic scheduling information
matches the failure pattern, the command unit is config-
ured to issue the command for causing the at least one of
the task schedulers to change the task execution order of
the at least one of the task schedulers, the command
being included in the periodic scheduling information.
3. The multiprocessor system according to claim 1,
wherein the scheduler management device is configured to
determine whether or not a task set processing is com-
pleted within the task period, the task set processing
being performed on one of the tasks included in the
corresponding one of the task sets and completed last,
and

40

45

50

55

20

wherein, when the scheduler management device deter-
mines that the task set processing is not completed
within the task period, the command unit is configured to
issue the command for causing the at least one of the task
schedulers to change the task execution order of the at
least one of the task schedulers.

4. The multiprocessor system according to claim 1,

wherein the scheduler management device further includes
atask period counter, a completed task storage unit, and
a failure determination unit,

wherein each of the processors is configured to notify the
scheduler management device of task identification
information of one of the tasks on which the task set
processing is completed, the task set processing being
processing for one repetition in the repeated execution,

wherein the completed task storage unit is configured to
store the task identification information of the one of the
tasks on which the task set processing is completed,

wherein the task period counter is configured to count a
number of cycles after the processors start execution of
the corresponding task sets,

wherein the failure determination unit is configured to
determine whether or not a failure task is present which
is not stored in the completed task storage unit at a
moment when the number of cycles exceeds the number
of cycles corresponding to the task period, the failure
task being one of the tasks in one of the task sets, and

wherein, when the failure determination unit determines
that at least the failure task is present, the command unit
is configured to issue the command for causing the at
least one of the task schedulers to change the task execu-
tion order of the at least one of the task schedulers.

5. The multiprocessor system according to claim 4,

wherein the command for causing the at least one of the
task schedulers to change the task execution order of the
at least one of the task schedulers contains task identifi-
cation information of at least the failure task, and

wherein the at least one of the task schedulers is configured
to change the task execution order of the at least one of
the task schedulers, so that a task corresponding to the
task identification information has an execution priority
lower than an execution priority of another task to be
executed by one of the processors which is configured to
execute the task corresponding to the task identification
information.

6. The multiprocessor system according to claim 5, further

comprising:

a shared bus having a bus controller; and

a shared resource in which the processors are configured to
write information via the shared bus,

wherein the bus controller includes a holding unit config-
ured to hold task identification information of two or
more confliction tasks which are write operations sched-
uled to be performed on the shared resource by two or
more of the processors on overlapping time periods, and

wherein the command unit includes, in the command for
causing the at least one of the task schedulers to change
the task execution order of the at least one of the task
schedulers, the task identification information of the
confliction tasks held in the holding unit, the confliction
tasks each being the failure task.

7. The multiprocessor system according to claim 6,

wherein the shared resource is either a shared memory or
an input/output interface.

8. The multiprocessor system according to claim 4,

wherein the scheduler management device further includes
a failure pattern storage unit and a task comparison unit,

US 9,170,841 B2

21

wherein, in a case where the failure determination unit
determines that a failure task is included in an executed
task set, the scheduler management device is configured
to store, in the failure pattern storage unit, as a failure
pattern, information including a task execution order of
tasks included in the executed task set, a processor ID of
the corresponding one of the processors which executes
the tasks in the corresponding one of the task sets, and a
task period which are included in the corresponding one
of the task sets,

wherein the at least one ofthe task schedulers is configured
to notify the task comparison unit of periodic scheduling
information which includes the task execution order of
the tasks included in the corresponding one of the task
sets to be executed by the corresponding one of the
processors including the at least one of the task sched-
ulers, the processor ID of the corresponding one of the
processors, and the task period,

wherein the task comparison unit is configured to deter-
mine whether or not the periodic scheduling information
matches the failure pattern by comparing the periodic
scheduling information with the failure pattern, and

wherein, when the periodic scheduling information
matches the failure pattern, the command unit is config-
ured to issue the command for causing the at least one of
the task schedulers to change the task execution order of
the at least one of the task schedulers, the command
being included in the periodic scheduling information.

9. The multiprocessor system according to claim 4,

wherein the task period counter is a register.

10. The multiprocessor system according to claim 1,

wherein the command unit is configured to issue the com-
mand for causing the at least one of the task schedulers
to make a schedule change including a change ofthe task
execution order of the at least one of the task schedulers,
and

wherein each of the at least one of the task schedulers is
configured to change a remaining task execution time of
the corresponding one of the processors, in response to
the command to make the schedule change issued by the
command unit.

11. The multiprocessor system according to claim 1,

wherein each of the processors has a time counter config-
ured to send a remaining task execution time to the at
least one of the task schedulers,

wherein the command unit is configured to issue the com-
mand for causing the at least one of the task schedulers
to make a schedule change including a change ofthe task
execution order of the at least one of the task schedulers,
and

wherein each of the at least one of the task schedulers is
configured to change a remaining task execution time of

22

a corresponding one of the time counters, in response to
the command to make the schedule change issued by the
command unit.

12. A system Large-Scale Integrated circuit (LSI) config-

5 ured to repeatedly execute task sets that each include a plu-

10

30

40

45

50

rality of tasks, the system LSI comprising:

a multiprocessor system;
an external data input/output unit;
an external storage connection unit; and an external control
device connection unit which are connected to the mul-
tiprocessor system via a system bus,
wherein the multiprocessor system includes a plurality of
processors, each including a task scheduler configured
to determine a task execution order of the tasks included
in a corresponding one of the task sets that is to be
executed by a corresponding one of the processors
within a task period which is defined as a time period in
repeated execution of the task sets to be executed by the
processors;
wherein the multiprocessor system includes:
a scheduler management device having a command unit
configured to issue a command for causing at least one of
the task schedulers included in the plurality of the pro-
cessors to change the task execution order of the at least
one of the task schedulers,
wherein each of the at least one of the task schedulers is
configured to change the task execution order of the at
least one of the task schedulers in response to the com-
mand issued by the command unit, the task execution
order of the at least one of the task schedulers being
composed of the tasks included in the corresponding one
of the task sets to be executed by the corresponding one
of the processors including the at least one of the task
schedulers, and
wherein the scheduler management device is configured
to:
compare first information regarding a task execution
order of tasks included in a task set on which task set
processing, which is processing for one repetition in
the repeated execution of the task sets, is not com-
pleted within the task period, and second information
regarding the task execution order determined by each
task scheduler included in the plurality of processors,
the first information being stored in the scheduler
management device; and

when the first information and the second information
match each other, issue a command for causing the at
least one of the task schedulers to change the task
execution order of the at least one of the task sched-
ulers.

13. A digital television receiver including the system [.SI

according to claim 12.

#* #* #* #* #*

